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Introduction
Acetylcholinesterase (AChE) is highly specific to the 

neurotransmitter acetylcholine, which the enzyme hydrolyzes, resulting 
in the termination of synaptic neurotransmission [1,2]. In contrast, 
butyrylcholinesterase (BChE), shown in (Figure 1), is a promiscuous 
enzyme that can act as an AChE-substitute in vivo and can hydrolyze 
various cholines, acyl cholines, acyl thiocholines, succinyl cholines, 
organophosphates, and acetanilides [3-6]. These enzymes, which play 
physiochemically distinct roles both in neurotransmission and in 
cellular differentiation and development [7], have thus been targeted as 
biosensors and bioscavengers that can detect and detoxify a myriad of 
organic poisons and pesticides [8,3,9].

They have also been targeted in treating a number of human 
health conditions including glaucoma, myasthenia gravis, and various 
central nervous system disorders such as traumatic brain injury, 
Down syndrome, and Parkinson dementia [10-12]. Often noted 
are the roles that these enzymes play in Alzheimer’s disease (AD), 
with AChE concentrations decreasing as the disease progresses, and 
BChE levels increasing to take up the role of hydrolysis in cholinergic 
neurons, concomitant with increasing quantities of amyloid-rich 
neural plaques and tangles [13]. The development of natural and 
synthetic cholinesterase inhibitors is thus a rapidly evolving field, and 
understanding both the physical interactions upon which protein-
ligand binding is dependent, and the dynamics inherent to such events, 
is central to future progress in all areas of biomolecular recognition.

A primary supposition of classical models of protein-ligand 
binding is that the binding event results in a single, lowest-energy 
protein-ligand configuration [14], which implicitly assumes that both 
protein and bound ligand suffer significant penalties in configurational 
entropy upon binding, thereby requiring an enthalpic counterbalance 
to overcome this entropy loss. In contrast, we observe a significant 
number of inhibitor-accessible binding modes that not only endow the 
inhibitor with unpredicted, residual conformational entropy, but also 
allow for continued protein flexibility after ligand binding.

We report herein our computational study of the inhibition of 
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Abstract
Butyrylcholinesterase is a key enzyme that catalyzes the hydrolysis of the neurotransmitter acetylcholine and 

shows an increased activity in patients suffering from Alzheimer’s disease (AD), making this enzyme a primary target in 
treating AD. Central to this problem, and to similar scenarios involving biomolecular recognition, is our understanding of 
the nature of the protein-ligand complex. The butyrylcholinesterase enzyme was studied via all-atom, explicit solvent, 
ensemble molecular dynamics simulations sans inhibitor and in the presence of three dialkyl phenyl phosphate inhibitors 
of known potency to a cumulative sampling of over 40 µs. Following relaxation of these ensembles to conformational 
equilibria, binding modes for each inhibitor were identified. While classical models, which assume significant reduction 
in both protein and ligand conformational entropies, continue to be favored in contemporary studies, our observations 
contradict those assumptions: bound ligands occupy many conformational states, thereby stabilizing the complex, while 
also promoting protein flexibility.

Figure 1: X-ray structure of BChE (1P0I.pdb) with the binding pocket magnified 
and a schematic of the DAPP inhibitors studied. Active site residues are color 
coded for easy identification including the catalytic triad (yellow), the oxyanion 
hole (orange), the choline binding site (green), the acyl binding site (blue), and 
the peripheral anionic site (red).
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BChE, which is targeted for moderate to severe symptoms of AD 
[2,13]. As in AChE, the Ser-His-Glu catalytic triad of BChE (yellow in 
Figure 1 inset) is located near the bottom of a binding pocket approx. 
20 Å deep, across which exists an electrostatic gradient. This active site 
gorge is lined with a number of aromatic and aliphatic residues, and 
previous studies have characterized the importance of a number of 
chemical groups within this pocket including the oxyanion hole, the 
acyl and choline binding sites, and the peripheral anionic site [15-18] 
(orange, blue, green, and red, respectively, in the Figure 1 inset). We 
employ three chemically similar, reversible dialkyl phenyl phosphate 
(DAPP) inhibitors, PO4(Ph)R2 (where R=methyl for DAPP1, n-propyl 
for DAPP3, and n-pentyl for DAPP5). These inhibitors have been 
characterized experimentally, displaying binding affinities that 
increase with alkyl chain length [15], and which form the base units of 
intriguing dimeric inhibitors that show improved potency [19].

Methods
All-atom molecular dynamics simulations of native BChE [16] 

sans inhibitor, and of the protein in complex with each of these 
DAPP inhibitors, were performed using GROMACS 3.3 [20] inside 
the Folding@Home distributed computing architecture [21]. The ~60 
kDa protein was modeled using the AMBER-03 force field of Duan, 
et al. [22]. Inhibitors were modeled using the general AMBER force 
field (GAFF) with RESP charges derived at the 6-31G* level using RED 
Server [23]. After initial docking of each inhibitor, sodium ions were 
randomly placed in a cubic 100 Å periodic box centered on the protein 
to establish electroneutrality. Solvation of this system with ~30,200 
TIP3P [24] explicit water molecules resulted in a total system size of 
nearly 100,000 atoms. Following annealing of the ionic solvent with 
the protein held fixed, 1000 simulations of each system were initiated. 
All simulations were performed in the NPT ensemble [25] at 1.0 atm 
and 300 K with switched cutoffs applied to van der Waals interactions 
between 8.0 and 10.0 Å, and electrostatic interactions beyond 12.0 
Å treated via reaction field. A 2.0 fs timestep was used, with bonds 
involving hydrogen atoms constrained using the LINCS algorithm 
[26], and conformations stored every 100 ps. We stress that no artificial 
or biasing potentials or restraints were applied to any portion of these 
simulated systems.

A total sampling time of ~7 μs per BChE-DAPP complex and ~20 
μs for the enzyme sans inhibitor was collected, yielding a cumulative 
sampling of over 40 μs. In each simulated ensemble, the size and native 
structure of the protein was completely maintained, as demonstrated 
in Table 1. For each DAPP inhibitor, the P-O-Ph oxygen was taken 
as the center-of-geometry (COG). All configurations in the resulting 

data sets were then analyzed by first aligning the protein to the initial 
(reference) structure and then characterizing the inhibitor position and 
orientation using a 15-dimensional vector composed of (a) the vector 
defining the inhibitor COG position relative to the protein center-of-
mass, (b) a vector defining the directional axis through the COG and 
phenyl para-carbon, (c) the vector normal to the phenyl ring plane, 
and (d) vectors defining the directions of the alkyl groups relative to 
the COG.  For each conformation, this 15-D vector was used as the 
basis for K-means clustering [27] to identify inhibitor binding modes.

Results and Discussion
Based on the population of each binding mode monitored over time, 

as illustrated for DAPP5 in Figure 2, conformational equilibrium was 
determined to occur at or prior to 6.0 ns in each ensemble. Following 
K-means clustering, the transition matrices for each DAPP ensemble, 
representing moves from each binding mode i to each binding mode j 
after this equilibration period, were found to demonstrate both time-
independence and detailed balance. Thermodynamic quantities were 
thus evaluated using only data beyond this point. Table 2 shows the 
number of binding modes (Nbind), the percentage of equilibrium in 
which docked inhibitor conformations were observed (%bind), and the 
configurational entropy associated with each bound inhibitor (TSbind), 
which was calculated using the statistical weight of each observed 
binding mode, Sbind=–R ∑ w(i) ln w(i), as defined by Chandler [29]. 

Also shown in Table 2 are the experimentally observed inhibitor 
dissociation constants (KI) for these three inhibitors [15], which 
are the equilibrium constants for the undocking process BChEI → 
BChE+I, and which we can thus approximate based on the number of 
unbinding events observed in our ensemble simulations as KI=[BChE]
[I]/[BChEI].  Significant dissociation of the DAPP1 inhibitor was 
observed, with the inhibitor re-entering the pocket in some simulations 
and leaving the enzyme entirely or interacting with the protein surface 
in others, making simple approximation of the DAPP1 dissociation 
constant intractable. For DAPP3 and DAPP5, however, we observed 
9 and 1 unbinding events, respectively, translating to approximate 
KI values of 0.082 and 0.001. These approximate values are well in-
line with the tabulated experimental values and validate both our 
simulation methodology and the inherent binding strength of these 
DAPPs in silico.

Project RMSD* (Å) Rg (Å) Nhelix
** Nbeta

**

1P0I.pdb (X-ray) 0.68 22.72 188 86
Starting Structure 0.00 22.75 184 86

Uninhibited Ensemble 2.51 ± 0.25 23.02 ± 0.11 175.6 ± 6.9 86.3 ± 4.4

DAPP1 Ensemble 2.43 ± 0.24 23.02 ± 0.11 176.6 ± 6.9 84.9 ± 4.2
DAPP3 Ensemble 2.63 ± 0.30 23.06 ± 0.13 175.0 ± 7.0 87.5 ± 4.5
DAPP5 Ensemble 2.42 ± 0.21 23.02 ± 0.11 175.5 ± 6.6 86.2 ± 4.4

Structural information provided in the final four rows of the table are averages over 
all data in each ensemble following the 6.0 ns timepoint.
*RMSD values were calculated from the simulation starting structure of the 
enzyme after energy minimization, solvation, and solvent annealing.
**Number of residues in helical and beta conformations determined by DSSP [28], 
including β-sheet and β-bridge residues in the Nbeta category and all helical forms 
in the Nhelix category.

Table 1: Ensemble averaged structural metrics for BChE alone and in BChE-DAPP 
complexes.

Figure 2: Populations of observed DAPP5 binding modes versus time, with 
binding mode populations split into three panels for visual clarity.
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As shown in Table 2, the three DAPP inhibitors studied herein 
sample numerous binding modes, which enhances the conformational 
entropy of the inhibitor after binding. This residual inhibitor entropy, 
TSbind, which is not accounted for in classical models, increases from ~2 
kT to ~3 kT going from DAPP1 to DAPP5, increasing linearly with the 
log of the binding strength. Moreover, while classical models assume 
that the configurational entropy of the protein will also decrease upon 
binding, we observe no sign of decreasing protein flexibility. Indeed, 
as illustrated in Figure 3, root-mean-squared fluctuations (RMSF) 
of the protein, per residue, show no significant change in protein 
flexibility within the binding pocket or elsewhere, and suggests quite 
the opposite: the RMSF of some residues in and near the binding 
pocket increase slightly in the presence of the more potent DAPP3 
and DAPP5 inhibitors. We conclude that the diverse binding modes 
observed herein not only enhance inhibitor entropy, but also promote 
protein flexibility and, by extension, protein configurational entropy. 
Structural representations of the 24 binding modes observed for the 
strong DAPP5 inhibitor, along with their relative binding free energies, 
are shown in Figure 4. 

These observations force us to question the applicability of 
classically-based docking models, which is well-supported by recent 
studies, experimental and computational alike, that have identified 
unexpected entropic contributions to a number of phenomena 
involving molecular recognition. For example, Mao et al. [30] applied 
scanning tunneling microscopy to study the binding of thioflavin T 
peptide to a prion peptide, identifying four binding modes of varying 
statistical weight and suggesting that more modes were possible. 
Cramer and co-workers combined all-atom simulation and nuclear 
magnetic resonance measurements to study ubiquitin in an aqueous 
solution of free ligands, reporting that bound ligands accessed a 
number of favorable conformations, and suggesting only a moderate 

loss of entropy upon binding [31]. And Lee and co-workers applied 
thermochemical measurements and analysis of crystallographic data 
to examine the inhibition of HIV-1 protease, noting a degeneracy of 
inhibitor binding states that is enhanced via solvent anchoring of the 
inhibitor to the active site [32].

These studies, alongside a number of additional observations put 
forth in the last decade, have strongly emphasized the importance 
of conformational flexibility and entropy in protein-ligand complex 
formation and stabilization [33-35], which are both accounted for in our 
all-atom ensemble simulations. Moreover, a notable review by Mobley 
and Dill on the physics of ligand binding emphasized the notion that 
small changes in conformation can lead to large changes in binding 
affinity [36], which is well illustrated by our ensemble simulations. 
Figure 4 provides concise descriptions of the interactions between 
DAPP5 and the BChE active site gorge for each observed binding mode, 
which includes residues in nearly every “hot spot” within the active site 
gorge identified by Butini et al. using bioinformatical techniques [37].

While statistical treatments provide an attractive model by which 
to discretize ligand binding modes, thereby allowing the tabulation of 
specific conformational preferences, biomolecular recognition (a.k.a. 
the “docking problem”) is more accurately modeled as the diffusive 
sampling of a continuous and rugged free energy landscape; the 
protein-ligand complex is a fluid body that is driven between local 
free energy minima by thermal fluctuations and solvent interactions, 
and the average binding mode structures depicted in Figure 4 thus 
represent only the most populated regions of this continuous free 
energy landscape.

Conclusion
The residual inhibitor entropy provided by diverse binding 

conformations, as described here for DAPP inhibition of BChE, 
increases the stability of the protein-inhibitor complex beyond 
classically-derived models, while also promoting protein flexibility. 
We postulate that this observation is generalizable to all flexible ligand-
receptor pairs, particularly those in which a large, chemically-rich 
binding site is available to the ligand. While classical models are useful 
in providing an elementary understanding of protein-ligand binding, 
an ever-growing number of observations have demonstrated that even 
a qualitatively-accurate description of the protein-ligand complex 

DAPP1
R=CH3

DAPP3
R=(CH2)2CH3

DAPP5
R=(CH2)4CH3

Nbind 17 15 24
%bind 64.6 98.3 100.0

TSbind (kcal/mol) 1.19 1.52 1.74
KI

* (mM) 1.7 ± 0.3 0.08 ± 0.02 0.006 ± 0.002
*Experimentally observed values for inhibition of BChE [15].

Table 2: DAPP inhibitor binding properties.

Figure 3: Top: The root-mean-squared fluctuation (RMSF) for each residue is shown for the enzyme sans inhibitor (black), and for the enzyme in the presence of the 
DAPP1 (blue), DAPP3 (green), and DAPP5 (red) inhibitors. Bottom: The percentage change in RMSF per residue compared to BChE sans inhibitor is shown for each 
BChE-DAPP complex, following the same color scheme used in the top panel. Dashed vertical lines in the background identify residues in the BChE binding pocket.
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must include conformational flexibility and entropic contributions, 
both of which must be accounted for quantitatively if future studies 
involving biomolecular recognition, docking, and drug design are to 
be successful.

Still, a number of questions remain, and a natural step forward 

in our analysis is a rigorous statistical treatment of the interactions 
described in Figure 4, as well as an assessment of the role of water in 
these binding interactions, which has become a prominent factor in 
discussions of the physics of protein-ligand binding in recent years 
[38,39]. Additional future directions include an evaluation of the role 

Figure 4: Average binding conformations for the DAPP5 inhibitor, which is shown in stick mode with phenyl and alkyl carbons shown in cyan and phosphorus, 
oxygen, and hydrogen atoms shown in yellow, red, and white, respectively. Water molecules have been removed from these images for visual clarity, and residues in 
the binding pocket are colored as noted in the key. Binding modes are labeled from the bottom up, with mode 0 being the most populated (lowest binding free energy) 
and mode 23 being the least populated (highest binding free energy), and the binding mode free energy in kcal/mol (relative to the lowest energy mode) specified in 
the bottom right corner of each frame. All images are viewed down the ~20 Å deep BChE active site gorge from the same reference point and at approximately the 
same relative magnification.



Citation: Sorin EJ, Alvarado W, Cao S, Radcliffe A, La P, et al. (2017) Ensemble Molecular Dynamics of a Protein-Ligand Complex: Residual Inhibitor 
Entropy Enhances Drug Potency in Butyrylcholinesterase. Bioenergetics 6: 145. doi: 10.4172/2167-7662.1000145

Page 5 of 5

Volume 6 • Issue 1 • 1000145
Bioenergetics, an open access journal
ISSN: 2167-7662

of inhibitor chemistry in defining binding mode diversity via ensemble 
simulations of a large and chemically-disparate set of inhibitors, and 
characterization of the mechanism of protein-ligand association, 
which has once again become a pronounced point of discussion in the 
biochemical and biophysical communities [14,36].

Associated Content
Selected simulation movies are available at http://folding.cnsm.

csulb.edu/BChE.php.
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